Name: \qquad
Student ID: \qquad
Section: \qquad
Instructor: \qquad

Math 113 (Calculus II)
 Exam 3

Nov. 18-22, 2010; late day Nov. 23, 2010

Instructions:

- For questions which require a written answer, show all your work. Full credit will be given only if the necessary work is shown, justifying your answer.
- Simplify your answers.
- Calculators are not allowed. Textbooks are not allowed. Notes are not allowed.
- Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
- Please do not talk about the exam with other students until after the last day to take the exam.

For Instructor use only.

$\#$	Possible	Earned
MC	35	
8	7	
9	8	
10	10	
11	10	
12	10	
13	10	
14	10	
Total	100	

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. Responses written on your exam will be ignored.

1. The sequence $\left\{\frac{\sin ^{2} n}{n}\right\}$ is
a) increasing, bounded, and divergent,
b) bounded and divergent,
c) bounded and converges to 1 ,
d) bounded and converges to 0 ,
e) unbounded and divergent,
f) None of these.
2. Find the values of p for which the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$ is convergent.
a) $p>0$
b) $p>1$
c) $p>2$
d) $p>3$
e) $p>4$
f) $p>5$
3. If

$$
s=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \quad \text { and } \quad s_{n}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}
$$

then the $n^{\text {th }}$-partial sum s_{n} is an approximation of s. Which of the following statements is true for s_{3} ?
a) $s_{3}>s$ and $\left|s_{3}-s\right|>\frac{1}{4}$
b) $s_{3}<s$ and $\left|s_{3}-s\right|>\frac{1}{4}$
c) $s_{3}>s$ and $\left|s_{3}-s\right|<\frac{1}{4}$
d) $s_{3}<s$ and $\left|s_{3}-s\right|<\frac{1}{4}$
4. Determine the interval of convergence for the power series

$$
\sum_{n=3}^{\infty} \frac{n}{5^{n}}(x+2)^{n}
$$

a) Converges only for $x=-2$
b) $(-\infty, \infty)$
c) $(-5,5)$
d) $(-5,5]$
e) $(-7,3)$
f) $[-7,3)$.
5. Use a power series centered at $x=0$ to approximate the integral

$$
\int_{0}^{1 / 2} \frac{1}{1-x^{3}} d x
$$

Find the sum of the first two nonzero terms of this series.
a) $9 / 16$
b) $3 / 4$
c) $33 / 64$
d) $17 / 32$
e) 2
f) none of the above
6. What is the sum of the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{4^{2 n+1}(2 n+1)!} ?
$$

a) $\frac{1}{2}$
b) $\frac{\sqrt{2}}{2}$
c) $\frac{\sqrt{3}}{2}$
d) 0
e) 1
f) none of the above
7. The Maclaurin series for $f(x)=\frac{x}{\sqrt{1+x}}$ is
a) $x+x^{2}+x^{3}+\cdots$,
b) $x-x^{2}+x^{3} / 2+\cdots$,
c) $x-x^{2} / 2+3 x^{3} / 8+\cdots$,
d) $x+x^{2} / 2-x^{3} / 6+\cdots$,
e) $x / 2+x^{2} / 3+x^{3} / 4+\cdots$,
f) none of the above.

Part II: In the following problems, show all work, and simplify your results.
8. (7 points) A ball is dropped from 100 feet. Every time it hits the ground, it rebounds to $1 / 3$ of its previous height. Find the total distance the ball travels.
9. (8 points) Determine whether the series is absolutely convergent, conditionally convergent, or divergent. (For full credit you must give a correct explanation.)

$$
\sum_{n=1}^{\infty} \frac{n}{\left(n^{7}+n^{2}\right)^{1 / 3}}
$$

10. (10 points) Determine whether the series is absolutely convergent, conditionally convergent, or divergent. (For full credit you must give a correct explanation.)

$$
\sum_{n=3}^{\infty} \frac{(-1)^{n} n}{\sqrt{n^{3}-2}}
$$

11. (10 points) Determine for which values of p the following sum converges.

$$
\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{n^{p}}
$$

12. (10 points) Find a power series centered at $x=0$ for $\frac{x}{\left(1-2 x^{2}\right)^{2}}$. Express it in summation notation and give the first 4 non-zero terms.
13. (10 points) Find the Taylor series for $f(x)=\sin (x)$ centered at $a=\pi / 2$, AND compute the radius of convergence for this Taylor series.
14. (10 points) Find the first TWO nonzero terms in the Maclaurin series of $x \sec (x / 3)$.
